THz Dielectric Properties of Molecular Clusters of PETN and TNT Calculated by Density Functional Theory

L. Huang, A. Shabaev, S.G. Lambrakos, and L. Massa

(Submitted November 29, 2011)

The need for better detection of explosive devices has imposed a necessity for determining the dielectric response properties of energetic materials with respect to electromagnetic wave excitation. Among the range of different frequencies for electromagnetic excitation, the THz frequency range is of particular interest because of its nondestructive nature. The present study is based on significant progress in density functional theory (DFT), and associated software technology, which is sufficiently mature for the determination of dielectric response functions, and actually provides complementary information to that obtained from experiment. This point is further demonstrated in this study by calculations of ground state resonance structure associated with molecular clusters of the high explosives PETN and TNT using DFT, which is for the construction of parameterized dielectric response functions for excitation by electromagnetic waves at frequencies within the THz range. These dielectric functions provide for different types of analyses concerning the dielectric response of explosives. In particular, these dielectric response functions provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. With respect to qualitative analysis, these spectra provide for the molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.

Keywords advanced characterization, chemical analysis, modeling processes

1. Introduction

A quantitative understanding of the dielectric response properties of high explosives with respect to electromagnetic wave excitation was motivated in the past by the need for monitoring munitions stockpiles under control of the US Navy, as well as other defense-related organizations. This was necessary because stored explosives are typically characterized by shelf lives and tend to degrade with time, as well as being subjected to environmental influences associated with storage, which can contribute to either their degradation or instability. In addition to understanding the dielectric response of individual explosives, as pure systems, it was necessary to understand their dielectric response as a component of a layered composite material. This was necessary because many explosives, as those used in practice, are a composite of binding materials, purpose of which can be both chemical and structural. It follows that, in the past, a primary motivation for quantitative understanding of dielectric properties of high explosives was for the purpose of accessing performance of energetic materials. The current need for better detection of explosive devices, however, has imposed

a new motivation for quantitative understanding of dielectric response properties of high explosives with respect to electromagnetic wave excitation. The motivation for this study is the aim of better detecting improvised explosive devices (IEDs), which is in contrast to the aim of better accessing the performance of materials used in industrially fabricated explosives for the purpose of munitions.

Among the range of different frequencies for electromagnetic excitation, for the purpose of IED detection, the THz frequency range is of particular interest because of its nondestructive nature and ability to penetrate materials that are characteristic of clothing. Typically, the dielectric response properties for electromagnetic wave excitation at THz frequencies, as well as at other frequencies, are determined by means of experimental measurements. The present study is based on significant progress in density functional theory (DFT), and associated software technology, which is sufficiently mature for the determination of dielectric response functions, and actually provides complementary information to that obtained from experiment. In particular, these dielectric response functions provide quantitative initial estimates of spectral response features that can be adjusted with respect to additional information, such as laboratory measurements and other types of theory-based calculations, as well as providing for the molecular level interpretation of response structure.

DFT has been successfully used to investigate the vibrational spectra of energetic materials in the form of single molecules and molecular crystals (Ref 1-7). These calculations provide detection signatures for various forms of materials, which can be encountered in various detection scenarios (Ref 8, 9). The isolated-molecule simulation results help identifying intramolecular vibrational modes in the absorption spectra of various materials. A series of studies have focused on the

L. Huang and S.G. Lambrakos, Naval Research Laboratory, Washington, DC 20375; A. Shabaev, George Mason University, Fairfax, VA 22030; and L. Massa, Hunter College, CUNY, New York, NY. Contact e-mail: lambrakos@anvil.nrl.navy.mil.

general concept of constructing dielectric response functions using DFT for the purpose of quantitative simulation of explosives detection scenarios (Ref 9-11). As emphasized in these studies, the construction of permittivity functions using DFT calculations defines a general approach where dielectric response is estimated within the bounds of relatively welldefined adjustable parameters. Following this approach, permittivity functions are constructed using DFT-calculated absorption spectra under the condition that the calculated resonance locations are fixed, while resonance widths and number densities are assumed adjustable with respect to additional information such as experimentally observed spectra.

Previous studies (Ref 9-11), of which this study is a continuation, considered the calculation of ground state resonance structure associated with single isolated molecules of various high explosives. With respect to practical application, these calculations are relevant for construction of dielectric response functions for detector designs where explosives tend to be in either gas phase or distributed over a surface as single molecules. In what follows, calculations are presented of ground state resonance structure associated with molecular clusters of PETN and TNT. It is significant to note that, with respect to practical application, molecular clusters represent a separate regime for using DFT calculations for construction of dielectric response functions. This regime is intermediate between that of single isolated molecules and molecules making up a crystal lattice. With respect to practical applications, i.e., detector design, this regime is significant in that a wide range of explosive materials are composite materials, which consist of distributions of embedded molecular clusters. Accordingly, the dielectric response functions for these materials, to be adopted for detector design, are weighted averages of the dielectric responses of noninteracting molecular clusters of explosives and the host material within which the clusters are embedded. In addition, with respect to theoretical understanding, the dielectric response of clusters provides insight concerning the nature of the transition of dielectric response to that of solids or systems having long-range order. This type of insight can in turn assist in understanding the nature of the difference between the intermolecular and intramolecular vibrations.

A significant aspect of using response spectra calculated by DFT, for the direct construction of dielectric response functions is that it adopts the perspective of computational physics, according to which a numerical simulation represents another source of "experimental" data. This perspective is significant in that a general procedure may be developed for construction of dielectric response functions using DFT calculations as a quantitative initial estimate of spectral response features for subsequent adjustment with respect to additional information such as experimental measurements and other types of theory-based calculations. That is to say, for the purpose of simulating many electromagnetic response characteristics of materials, DFT is sufficiently mature for the purpose of generating data complementing, as well as superseding, experimental measurements.

In the case of THz excitation of materials, the procedure of using response spectra calculated using DFT, which is associated with ground state resonance structure, for the direct construction of permittivity functions is well posed owing to the physical characteristic of THz excitation. In particular, it is important to note that the procedure for constructing a permittivity function using response spectra calculated using DFT is physically consistent with the characteristically linear response associated with THz excitation of molecules. Accordingly, one observes a correlation between the advantages of using THz excitation for detection of explosives (and ambient materials) and those for its numerical simulation based on DFT. Specifically, THz excitation is associated with frequencies that are characteristically perturbative to molecular states, in contrast to frequencies that can induce appreciable electronic state transitions. Of course, the practical aspect of the perturbative character of THz excitation for detection is that detection methodologies can be developed, which do not damage materials under examination. The perturbative character of THz excitation with respect to molecular states has significant implications with respect to its numerical simulation based on DFT. It follows then that, owing to the perturbative character of THz excitation, which is characteristically linear, one is able to make a direct association between local oscillations about ground-state minima of a given molecule and THz excitation spectra.

Construction of permittivity functions according to the best fit of available data for a given material corresponding to different types of experimental measurements has been typically the dominant approach. This approach is extended by using DFT calculations of electromagnetic response as data for construction of permittivity functions. The inclusion of this type of information is significant for accessing what spectral response features at the molecular level are actually detectable with respect to a given set of detection parameters. Accordingly, permittivity functions having been constructed using DFT calculations provide a quantitative correlation between macroscopic material response and molecular structure. Within this context, it is not important that the permittivity function be quantitatively accurate for the purpose of being adopted as input for system simulation. Rather, it is important that the permittivity function be qualitatively accurate in terms of specific dielectric response features for the purpose of sensitivity analysis, which is relevant for the assessment of absolute detectability of different types of molecular structure with respect to a given set of detection parameters. That is to say, permittivity functions that have been determined using DFT can provide a mechanistic interpretation of material's response to electromagnetic excitation that could establish the well posedness of a given detection methodology for detection of specific molecular characteristics. Within the context of practical application, permittivity functions having been constructed according to the best fit of available data would be "correlated" with those obtained using DFT for proper interpretation of permittivity-function features. Subsequent to establishment of good correlation between DFT and experiment, DFT calculations can be adopted as constraints for the purpose of constructing permittivity functions, features of which are consistent with molecular level response, for adjustment relative to specific sets of either experimental data or additional molecular level information.

In what follows, calculations are presented of ground state resonance structure associated with molecular clusters of PETN and TNT, which is for the construction of parameterized dielectric response functions for excitation by electromagnetic waves at compatible frequencies. For this purpose, the DFT software GAUSSIAN09 (G09) was adopted (Ref 12).

The organization of the subject areas presented here are as follows. First, a brief description of the elements of vibrational analysis using DFT relevant for the calculation of absorption spectra is presented. Second, a general review is presented concerning the formal structure of permittivity functions in terms of analytic function representations. An understanding of the formal structure of permittivity functions in terms of both physical consistency and causality is important for postprocessing of DFT calculations for the purpose of constructing permittivity functions. Third, information concerning the ground state resonance structure of molecular clusters of PETN and TNT, which is obtained using DFT, is presented. This information consists of the ground state molecular geometry and response spectrum for single isolated molecule and molecular clusters of PETN and TNT. Fourth, a discussion is presented that elucidates the utility of information concerning the ground state resonance structure of molecular clusters of explosives. This discussion also suggests procedures for the construction of permittivity functions that are in terms of reduced sets of phenomenological parameters. Finally, a conclusion is given summarizing the significance of modeling the dielectric response of molecular clusters relative to explosives detection in practice.

2. Construction of Dielectric Response Functions Using DFT

As in previous studies (Ref 9-11), the formal mathematical structure underlying DFT calculations, as well as the procedure for constructing permittivity functions using these calculations, is included here for purposes of completeness. A brief description of this mathematical structure is as follows.

The DFT software GAUSSIAN09 (G09) can be used to compute an approximation of the IR absorption spectrum of a molecule or molecules (Ref 12). This program calculates vibrational frequencies by determining second derivatives of the energy with respect to the Cartesian nuclear coordinates, and then transforming to mass-weighted coordinates at a stationary point of the geometry (Ref 13). The IR absorption spectrum is obtained using DFT to compute the ground state electronic structure in the Born-Oppenheimer approximation using Kohn-Sham density functional theory (Ref 14-18). GAUSSIAN uses specified orbital basis functions to describe the electronic wavefunctions and density. For a given set of nuclear positions, the calculation directly gives the electronic charge density of the molecule, the potential energy V, and the displacements in Cartesian coordinates of each atom. The procedure for vibrational analysis followed in GAUSSIAN is that described in Ref 19. Reference 20 presents a fairly detailed review of this procedure. A brief description of this procedure is as follows.

The procedure followed by GAUSSIAN is based on the fact that the vibrational spectrum depends on the Hessian matrix \mathbf{f}_{CART} , which is constructed using the second partial derivatives of the potential energy V with respect to displacements of the atoms in Cartesian coordinates. Accordingly, the elements of the $3N \times 3N$ matrix \mathbf{f}_{CART} are given by

$$f_{\text{CART}ij} = \left(\frac{\partial^2 V}{\partial \xi_i \partial \xi_j}\right)_0 \tag{Eq 1}$$

where $\{\xi_1, \xi_2, \xi_3, \xi_4, \xi_5, \xi_6, \dots, \xi_{3N}\} = \{\Delta x_1, \Delta y_1, \Delta z_1, \Delta x_2, \Delta y_2, \Delta z_2, \dots, \Delta z_N\}$, which are displacements in Cartesian coordinates, and *N* is the number of atoms. As discussed above, the zero subscript in Eq 1 indicates that the derivatives are taken at the equilibrium positions of the atoms, and that the first derivatives are zero. Given the Hessian matrix

defined by Eq 1, the operations for calculation of the vibrational spectrum require that the Hessian matrix Eq 1 be transformed to mass-weighted Cartesian coordinates according to the relation

$$f_{\rm MWCij} = \frac{f_{\rm CARTij}}{\sqrt{m_i m_j}} = \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0 \tag{Eq 2}$$

where $\{q_1, q_2, q_3, q_4, q_5, q_6, \dots, q_{3N}\} = \{\sqrt{m_1}\Delta x_1, \sqrt{m_1}\Delta y_1, \sqrt{m_1}\Delta z_1, \sqrt{m_2}\Delta x_2, \sqrt{m_2}\Delta y_2, \sqrt{m_2}\Delta z_2, \dots, \sqrt{m_N}\Delta z_N\}$ are the mass-weighted Cartesian coordinates. GAUSSIAN computes the energy second derivatives Eq 2, thus computing the forces for displacement perturbations of each atom along each Cartesian direction. The first derivatives of the dipole moment with respect to atomic positions $\partial \vec{\mu} / \partial \xi_i$ are also computed. Each vibrational eigenmode leads to one peak in the absorption spectrum, at a frequency equal to the mode's eigenfrequency v_{n0} . The absorption intensity corresponding to a particular eigenmode *n* eigenfrequency of which is v_{n0} is given by

$$I_n = \frac{\pi}{3c} \left| \sum_{i=1}^{3N} \frac{\partial \vec{\mu}}{\partial \xi_i} l_{\text{CART}in} \right|^2, \quad (\text{Eq 3})$$

where l_{CART} is the matrix elements of which are the displacements of the atoms in Cartesian coordinates. The matrix l_{CART} is determined by the following procedure. First,

$$\mathbf{l}_{CART} = \mathbf{M}\mathbf{l}_{MWC},\tag{Eq 4}$$

where I_{MWC} is the matrix elements of which are the displacements of the atoms in mass-weighted Cartesian coordinates, and **M** is a diagonal matrix defined by the elements

$$M_{ii} = \frac{1}{\sqrt{m_i}}.$$
 (Eq 5)

Proceeding further, l_{MWC} is the matrix needed to diagonalize f_{MWC} defined by Eq 2 such that

$$\left(\mathbf{I}_{MWC}\right)^{\mathrm{T}}\mathbf{f}_{MWC}(\mathbf{I}_{MWC}) = \Lambda, \qquad (\mathrm{Eq}\ 6)$$

where Λ is the diagonal matrix with eigenvalues λ_i . The procedure for diagonalizing Eq 6 consists of the operations:

$$\mathbf{f}_{\text{INT}} = (\mathbf{D})^{\text{T}} \mathbf{f}_{\text{MWC}}(\mathbf{D}) \tag{Eq 7}$$

and

$$(\mathbf{L})^{\mathrm{T}} \mathbf{f}_{\mathrm{MWC}}(\mathbf{L}) = \Lambda, \tag{Eq 8}$$

where **D** is a matrix transformation to coordinates where rotation and translation have been separated out, and **L** is the transformation matrix composed of eigenvectors calculated according to Eq 8. The eigenfrequencies in units of (cm^{-1}) are calculated using the eigenvalues: λ_n by the expression

$$v_{n0} = \frac{\sqrt{\lambda_n}}{2\pi c},\tag{Eq 9}$$

where c is the speed of light. The elements of l_{CART} are given by

$$l_{\text{CART}ki} = \sum_{j=1}^{3N} \frac{D_{kj} L_{ji}}{\sqrt{m_j}},$$
 (Eq 10)

where k, i = 1, ..., 3N, and the column vectors of these elements are the normal modes in Cartesian coordinates.

The intensity Eq 3 must then be multiplied by the number density of molecules to give an absorption strength. It follows that the absorption spectrum calculated by GAUSSIAN is a sum of delta functions, positions and magnitudes of which correspond to the vibrational frequencies and magnitudes, respectively. In principle, however, these spectral components must be broadened and shifted to account for anharmonic effects such as finite mode lifetimes and inter-mode couplings.

The construction of permittivity functions using DFT calculations requires that a specific parametric function representation be adopted. This parametric representation must be physically consistent with specific molecular response characteristics, while limiting the inclusion of feature characteristics that tend to mask response signatures that may be potentially detectable. In principle, parameterizations are of two classes. One class consists of parameterizations that are directly related to molecular response characteristics. This class of parameterizations would include spectral scaling and width coefficients. The other class consists of parameterizations that are purely phenomenological and are structured for optimal and convenient best fits to experimental measurements. A sufficiently general parameterization of permittivity functions is given by the Drude-Lorentz approximation (Ref 21, 22)

$$\varepsilon(\mathbf{v}) = \varepsilon'(\mathbf{v}) + i\varepsilon''(\mathbf{v}) = \varepsilon_{\infty} + \sum_{n=1}^{N} \frac{\mathbf{v}_{np}^2}{(\mathbf{v}_{n0}^2 - \mathbf{v}^2) - i\gamma_n \mathbf{v}},$$
(Eq 11)

where v_{np} and γ_n are the spectral scaling and width of a resonance contributing to the permittivity function. The permittivity ε_{∞} is a constant since the dielectric response at high frequencies is substantially detuned from the probe frequency. The real and imaginary parts, $\varepsilon_r(v)$ and $\varepsilon_i(v)$, respectively, of the permittivity function can be written separately as

$$\begin{split} \epsilon_{\rm r}(\nu) &= \epsilon_{\infty} + \sum_{n=1}^{N} \frac{\nu_{np}^2 (\nu_{n0}^2 - \nu^2)}{(\nu_{n0}^2 - \nu^2)^2 + \gamma_n^2 \nu^2} \quad \text{and} \\ \epsilon_{\rm i}(\nu) &= \sum_{n=1}^{N} \frac{\nu_{np}^2 \gamma_n \nu}{(\nu_{n0}^2 - \nu^2)^2 + \gamma_n^2 \nu^2}. \end{split} \tag{Eq 12}$$

With respect to practical application, the absorption coefficient α and index of refraction n_{r} , given by

$$\begin{split} \alpha &= \frac{4\pi\nu}{\sqrt{2}} \left[-\epsilon_{\rm r} + \sqrt{\epsilon_{\rm r}^2 + \epsilon_{\rm i}^2} \right]^{1/2} \quad \text{and} \\ n_{\rm r} &= \frac{1}{\sqrt{2}} \left[\epsilon_{\rm r} + \sqrt{\epsilon_{\rm r}^2 + \epsilon_{\rm i}^2} \right]^{1/2}, \qquad (\text{Eq 13}) \end{split}$$

respectively, provide direct relationships between calculated quantities obtained by DFT and the "conveniently measurable" quantities α and n_r . It is significant to note that in what follows, the absorption coefficient α is determined using DFT-calculated spectra in the same spirit as for its measurement in the laboratory. Although permittivity functions $\varepsilon(v)$ are not determined explicitly in the present study, it must be kept in mind that the ultimate construction of these functions is necessary for using DFT-calculated spectra to model the dielectric response of complex composite materials and associated detector designs (Ref 9).

3. Ground State Resonance Structure of Three-Molecule Cluster of PETN

In this section are presented the results of computational experiments using DFT concerning a three-molecule cluster of PETN. These results include the relaxed or equilibrium configuration of a single isolated molecule of PETN (see Table 1) and ground-state oscillation frequencies and IR intensities for this configuration, which are calculated by DFT according to the frozen phonon approximation (see Table 2). The ground state resonance structure for a single isolated molecule of PETN is adopted as a reference for analysis of spectral features associated with a three-molecule cluster. For these calculations, geometry optimization and vibrational analysis was effected using the DFT model B3LYP (Ref 23, 24) and basis function 6-311G(2d,2p) (Ref 25, 26). According to the specification of this basis function, (2d,2p) designates polarization functions having 2 sets of d functions for heavy atoms and 2 sets of p functions for hydrogen atoms (Ref 27). A schematic representation of the molecular geometry of a single isolated molecule of PETN is shown in Fig. 1. A schematic representation of the molecular geometry of molecular cluster consisting of 3 molecules is shown in Fig. 2. It is significant to note that the relative positions of the molecules associated with this molecular cluster are according to crystallographic structure conditions that would be associated with bulk material. The ground-state oscillation frequencies and IR

Table 1 Atomic positions of PETN (Å) after optimization

Atomic number	X	V	7
mumber	1	1	
6	-0.89008	0.487044	0.169443
6	0.56833	0.025631	0.355901
6	-0.954153	2.010353	0.393203
6	-1.775405	-0.266852	1.180709
6	-1.399001	0.17896	-1.25209
8	-0.536524	2.246621	1.753563
8	0.594489	-1.388358	0.071682
8	-3.114945	0.243543	1.019535
8	-0.503707	0.845656	-2.165744
8	-5.169236	0.102355	1.756224
8	-3.660475	-1.176108	2.678384
8	-0.213539	3.790051	3.268901
8	-0.916392	4.418249	1.301021
8	-0.065066	1.202636	-4.278301
8	-1.784867	-0.046988	-3.786458
8	1.885603	-3.148164	-0.06536
8	2.801652	-1.246607	0.487954
1	-1.969444	2.373078	0.253141
1	-0.289344	2.531375	-0.29121
1	0.903906	0.201954	1.374781
1	1.224466	0.550575	-0.333979
1	-1.43301	-0.084138	2.196278
1	-1.763653	-1.336176	0.985073
1	-2.410743	0.55161	-1.391197
1	-1.382201	-0.89204	-1.438315
7	-4.069163	-0.341502	1.911776
7	-0.561634	3.625752	2.13612
7	1.895046	-1.976796	0.177844
7	-0.825239	0.640236	-3.54537

Table 2	Oscillation frequencies and IR intensities
for single	isolated molecule of PETN

Table 2	Continued
---------	-----------

Frequency, cm ⁻¹	Intensity, km/mol
23.0186	0
23.468	1.7622
37.0668	0.0792
38.2553	1.0181
38.256	1.0182
49.1445	0
51.2098	0.0198
56.1273	1.4445
56.1281 125.0821	1.4444
125.0831	0.5041
137 2362	0.3041
149.3	0
175.381	0
198.2257	0.822
198.2262	0.822
213.1381	0
253.3021	2.0613
256.0704	1.9542
256.0709	1.9542
309.178	1.5099
319.7365	0
453.5805	3.0027
433.3809 533.0816	12 509
589 553	0
620.4669	9.0561
625.7476	8.654
625.7479	8.6542
676.3956	0
711.7268	53.505
711.7271	53.5047
756.1322	54.9232
775.0616	12.1352
//5.0623	12.1353
776 5314	30 3068
842 7866	0
857.2537	365.5689
857.2545	365.5689
861.1535	708.764
887.0866	0
927.126	12.2082
944.6012	7.5925
944.6018	7.5925
1015.2359	0
1031.1128	68.9949
1051.1155	68.9954
1069 3729	100 3831
1184 1914	2 4068
1203.243	0.1994
1203.2433	0.1994
1264.3964	0
1284.5981	21.2105
1284.5988	21.2112
1310.0272	243.6025
1329.7418	272.2731
1329.7419	272.2725
1343.2953	0
1344.2228	190.284/
1406 7097	43.0983 13.0982
	±3.0902

Frequency, cm ⁻¹	Intensity, km/mol
1410.9192	64.19
1425.4355	0
1513.7205	0
1514.457	4.0158
1520.2629	13.4384
1520.2631	13.4385
1765.1326	0
1766.3812	231.1996
1767.5533	544.1035
1767.554	544.1009
3081.5559	5.7489
3082.5044	7.1942
3082.5051	7.1942
3084.4409	0
3139.0088	0
3140.7324	5.4891
3140.7327	5.4894
3143.0876	10.9428

intensities for the three-molecule cluster of PETN, corresponding to its relaxed equilibrium configuration, are calculated by DFT according to the frozen phonon approximation. In the case of a molecular cluster of 3 molecules, these values are given in Table 3. The DFT model and basis function used for these calculations are the same used for the single isolated molecule of PETN. Two programs, ConQuest and Mercury (Ref 28), have been used for searching the Cambridge Structural Database (CSD), visualizing database entries for PETN (and TNT in what follows), and for creating the *n*-molecule clusters. When constructing the cluster it was necessary to consider the interactions and forces between the single molecule and its intermolecular neighborhood. In particular, a consideration of hydrogen bonding between the molecules is important for establishing the cluster.

Proceeding further, shown in Fig. 3 and 4 are the calculated IR intensities for a single isolated molecule and three-molecule cluster of PETN. The IR intensities shown in these figures are given in the form of discrete delta-function representations of the spectra. Comparison of these figures shows a noticeable increase in the number of resonances for the molecular cluster relative to the single molecule. This increase is physically consistent with the manifestation of resonant modes associated

Fig. 2 Molecular geometry of three-molecule cluster of PETN

Table 3	Oscillation frequencies and IR intensities
for three-	molecule cluster of PETN

Table	3	Continued
-------	---	-----------

		Frequency, cm ⁻¹	Intensity, km/mol
Frequency, cm ⁻¹	Intensity, km/mol		
		150.8196	0
2.7459	0.005	151.0548	0.6581
3.0959	0	151.6617	0
5.9927	0	179.9747	0.0565
9.3696	0.0003	179.9893	0.091
9.4769	0.0102	187.9166	0.0943
12.6516	0.0555	191.0116	1.1948
19.0972	0.6809	193.9818	4.2534
21.5863	0.0499	193.9882	0.0045
23.4909	3.1816	203.0462	1.4143
24.2182	0.0223	203.1005	0.0342
24.2957	0.1038	204.4253	0.2964
26.1885	0.0298	215.1988	0.0063
27.792	0.0928	215.2201	0.0489
29.53	0.6686	216.7523	0.0112
32.3744	0.148	253.5204	2.5784
33.728	0.6131	253.5395	1.3166
36.5112	0.1353	255.4469	2.9787
37.9722	1.142	256.9556	4.6241
40.1106	0.1238	256.9622	0.0114
40.2686	0 7434	258.4687	2.3891
40 6739	0.0067	260,5664	0.4464
41 148	0.0902	260.6916	6.0475
45 3709	0.8009	261.354	4.6746
45 4139	0.0058	308 4312	0 5996
49.0572	0.1161	310.0498	1.3298
52 0377	0.0004	310 2897	5 5818
52.0377	2 3979	318.7477	0.0604
52.0115	0.211	319 4577	0.5603
54 4623	4 7351	319.48	0 2014
56 9478	1 8036	452 9283	7 3557
56 9559	0.0156	452 9482	0 3582
58 1967	0.8009	454 1579	3 0692
50.0884	0.0242	456 9975	9.8235
60 7806	0.0242	457 2185	0.0887
62 0465	2,6303	458 9726	1 6145
64 1165	2.0393	535 0382	21 8539
67 5021	2,5224	535.0643	0 3361
07.3021 81 1562	2.3534	536 2878	2 4334
81.1505	0.005	590.701	0.0464
02.4254	0.2897	590.7104	0.044
123.700	1.0121	591 5033	0.049
125.9802	0.0784	621 6022	0.0049
125.3039	0.039	621.0952	2 4644
129./380	0.995	622 7827	2.4044
129.8118	0.2058	624 7261	0.1422
140.0045	1.3884	024.7201 625.2445	0.1423
140.8086	0.7455	023.2443	1.4003
141.5511	0.6157	023.2370	10.8018
143.0774	0.09	050.5130	20.158

Table 3 Continued

Table 3 Continued

Frequency, cm ⁻¹	Intensity, km/mol	Frequency, cm ⁻¹	Intensity, km/mol
630.4765	2.2566	1182.1937	0.5315
633.2105	21.9922	1183.4821	0.5997
677.9521	2.6767	1183.5236	3.8764
677.9772	0.5639	1200.4976	0.5446
679.5992	1.3293	1201.5612	1.1979
711.3558	37.4622	1201.5688	0.0735
711.5214	0.0131	1203.6359	0.3577
711.6724	135.8772	1203.7332	0.0599
714.8454	67.0988	1203.8767	0.012
714.9153	4.0388	1264.6515	0.0131
717.5967	55.4965	1264.6724	1.2153
754.8807	8.6665	1264.6882	0
755.7139	6.5923	1284.3719	/1.0302
755.9681	125.2554	1284.4592	0.0881
//1.48/6	35.9297	1284.9974	15.2172
//1.5/00	0.5576	1287.3338	49.0979
772.045	32.9092	1280.071	0.2809
775.0150	0 2022	1209.071	24.2020
775.0139	0.3922	1310 31/3	22 3865
775 3602	5 8581	1312 6071	576 5331
775 3761	7 2323	1324 9568	463 472
775 5979	15 9024	1326 1389	650 3981
776 2775	20 1457	1328 1746	0.0026
776 3102	0.0334	1330 5981	0.0236
776.7685	18.1673	1331.6897	357.7667
843.0367	11.9947	1332.6163	325.2102
843.3959	10.8952	1341.1545	0.0623
844.2677	3.2431	1342.6538	0.8549
852.5711	74.5096	1343.0424	2.8398
854.7542	1.2119	1344.1932	3.4047
855.0319	1113.0496	1344.3925	9.4586
859.1821	440.0582	1344.9041	489.2351
859.2446	328.521	1407.7294	75.5986
862.1922	204.4109	1407.7589	0.0147
867.808	188.3015	1408.5706	80.8585
870.1517	767.9538	1408.7397	11.8525
872.9782	442.748	1408.9039	56.6913
890.1616	10.2077	1410.5243	34.4459
891.835	78.6084	1412.4119	12.556
896.2267	265.5877	1412.4762	67.0457
928.7986	20.8334	1413.4799	85.1998
928.7987	0.2006	1426.6968	0.2855
931.284	22.9396	1426.7509	1.5948
939.29	0.062	1427.8077	0.8237
942.0798	0.9418	1504.132	2.0613
942.9281	15.3538	1508.4720	40.4544
948.6176	15.6586	1508.4739	0.522
948.0243	2.9713	1511.4555	10.212
950.0091	9.2303	1512.9001	0.4130
1013.7078	0.3089	1512 6084	2.5769
1014.4644	1.0770	1516 7607	2,007
1021 6065	38 8561	1516 7999	16 3591
1026 3538	0 189	1518 0491	10.1118
1026 4937	140 2393	1519 4949	21 3927
1033 9843	152 6453	1519 5026	0 0019
1034 1356	0 5469	1746 3506	1019 5118
1036 3997	108 9989	1746 6143	236 3832
1060.5533	11 1806	1752.1338	0 2487
1063.3865	1 689	1753.121	121 7147
1063.7787	52, 3445	1766.1827	656 7066
1068.8099	46.4614	1766.2982	0.0164
1069.15	1.7564	1766.9027	527.3882
1070.5229	152.8388	1767.3317	131.9252

Table 3 Continued

Frequency, cm ⁻¹	Intensity, km/mo	
1768.5984	63.6771	
1769.1071	244.2138	
1770.5093	937.002	
1770.6707	151.094	
3078.3787	9.9733	
3078.3806	3.0626	
3079.4727	12.1956	
3079.8242	1.1214	
3081.5474	8.191	
3081.5496	2.1684	
3083.6433	13.4875	
3083.6489	0.0252	
3095.5657	10.7196	
3096.1804	2.0796	
3098.1538	3.8464	
3098.1646	1.7708	
3136.0608	5.0163	
3136.0637	3.8842	
3140.5251	5.7739	
3140.7388	9.6767	
3140.7444	0.0509	
3140.7461	5.9203	
3147.1145	6.1931	
3147.1213	5.1318	
3155.8755	4.9167	
3156.3723	4.0165	
3160.1804	3.5558	
3160.1809	5.7426	

Fig. 3 IR intensity (arbitrary units) as a function of frequency calculated using DFT B3LYP/6-311G(2d,2p) for single isolated molecule of PETN according to frozen phonon approximation

with intermolecular coupling within the molecular cluster. Shown in Fig. 5 and 6 are continuous spectra that are constructed using a superposition of essentially Lorenzian functions of various heights and widths, which have been fit to the discrete spectra given in Table 2 and 3, respectively. This construction is applied within the GAUSSIAN program (Ref 12). The significance of this type of construction is discussed further below. Comparison of Fig. 5 and 6 shows the persistence of various dominant resonance signatures for both a

Fig. 4 IR intensity (arbitrary units) as a function of frequency calculated using DFT B3LYP/6-311G(2d,2p) for three-molecule cluster of PETN according to frozen phonon approximation

single isolated molecule and molecular cluster. This result supports the notion as suggested in previous studies (Ref 10, 11) that permittivity functions constructed using DFT-calculated spectra for single isolated molecules may be sufficient for detection in cases of excitation frequencies compatible with intramolecular resonance modes.

4. Ground State Resonance Structure of Molecular Clusters of TNT

In this section are presented the results of computational experiments using DFT concerning molecular clusters of TNT. These results include the relaxed or equilibrium configuration of a single isolated molecule of TNT (see Table 4) and groundstate oscillation frequencies and IR intensities for this configuration, which are calculated by DFT according to the frozen phonon approximation (see Table 5). The ground state resonance structure for a single isolated molecule of TNT is adopted as a reference for analysis of spectral features associated with molecular clusters of different sizes. For these calculations, geometry optimization and vibrational analysis was effected using the same DFT model and basis function 6-311G(2d,2p) used for PETN presented above. A schematic representation of the molecular geometry of a single isolated molecule of TNT is shown in Fig. 7. A schematic representation of molecular geometries of molecular clusters consisting of 2 and 4 molecules are shown in Fig. 8 and 9, respectively. It is significant to note that the relative positions of the molecules associated with each of the molecular clusters is according to crystallographic structure conditions that would be associated with bulk material. The ground-state oscillation frequencies and IR intensities for the different molecular clusters of TNT, corresponding to their relaxed equilibrium configurations, are calculated by DFT according to the frozen phonon approximation. In the cases of molecular clusters of 2 and 4 molecules, these values are given in Table 6 and 7, respectively. As in the case of PETN presented above, the DFT model and basis function used for these calculations are the same as those used for the single isolated molecule of TNT.

Fig. 5 Continuous-spectrum representation of IR intensity (arbitrary units) as a function of frequency calculated using DFT for single isolated molecule of PETN

Fig. 6 Continuous-spectrum representation of IR intensity (arbitrary units) as a function of frequency calculated using DFT for three-molecule cluster of PETN

Proceeding further, shown in Fig. 10-12 are the calculated IR intensities for a single isolated molecule and molecular clusters consisting of two and four molecules of TNT. Shown in Fig. 13-15, are continuous spectra consisting of a superposition of essentially Lorenzian functions of various heights and

widths, which have been constructed using the discrete spectra given in Table 5-7, respectively. Referring to Fig. 10-12, one observes a noticeable increase in the number of resonances with increase in molecular cluster size. Again, this increase is physically consistent with the manifestation of resonant modes

Table 4 Atomic positions for equilibrium configuration of TNT (Å)

Atomic number	X	Y	Z
1	1.294359	-0.627693	1.916458
1	-2.458208	-0.867791	-0.128619
1	0.754635	0.052629	-3.504585
1	1.68668	-1.400164	-3.189867
1	2.304987	0.153675	-2.659394
6	0.730091	-0.664364	0.998736
6	-0.646569	-0.782893	1.016672
6	-1.382696	-0.799534	-0.152696
6	-0.701136	-0.724375	-1.355556
6	0.693755	-0.609698	-1.463028
6	1.364308	-0.592195	-0.229936
6	1.399735	-0.432944	-2.779328
7	-1.347001	-0.883583	2.313715
7	2.841751	-0.500544	-0.177322
7	-1.547799	-0.781608	-2.569596
8	3.474661	-1.155138	-0.992685
8	3.321537	0.203741	0.698298
8	-0.658543	-0.86075	3.323182
8	-2.564711	-0.982781	2.284321
8	-2.607727	-0.174823	-2.533999
8	-1.14092	-1.451907	-3.507164

associated with intermolecular coupling within the molecular cluster, which are at relatively lower frequencies, which are in turn compatible with intermolecular resonance modes. Referring to Fig. 13-15, which in contrast to Fig. 10-12, show spectra at relatively higher frequencies, which are in turn compatible with intramolecular resonance modes, the persistence of various dominant resonance signatures are readily observable.

5. Discussion

The DFT-calculated absorption spectra given in Table 2, 3, and 5-7 provide two types of information for general analysis of dielectric response. These are the denumeration of ground state resonance modes and estimates of molecular level dielectric response structure. The construction of permittivity functions using the DFT-calculated absorption spectra follows the same procedure as that applied for the construction of permittivity functions using experimentally measured absorption spectra, but with the addition of certain constraint conditions. Accordingly, construction of permittivity functions using either DFT or experimentally measured absorption spectra requires parameterizations that are in terms of physically consistent analytic function representations such as the Drude-Lorentz model. Although the formal structure of permittivity functions constructed using DFT and experimental measurements are the same, their interpretation with respect to parameterization is different for each case.

The construction of permittivity functions using experimental measurements defines an inverse problem where resonant locations, peaks and widths, as well as the number of resonances, are assumed adjustable. Following this approach, it follows that many of the detailed characteristics of resonance structure are smoothed or averaged. In addition, measurement

Table 5Oscillation frequencies and IR intensitiesfor single isolated molecule of TNT

Frequency, cm ⁻¹	Intensity, km/mo
48.1344	0.1511
54.4696	0.0031
54.6314	0.449
95.2736	4.9386
120.4472	4.6364
149.4345	2.5947
176.8858	0.2872
187.9397	0.1349
195.623	4.7398
296.0832	1.9743
324.2345	0.2144
327.7225	0.0382
352.9275	2.4697
367.8506	1.3391
386.8114	1.1556
4/0./113	1.3672
481.9805	0.0293
541.3526	1.0016
548.7636	2.1862
662.2958	9.245
667.0623 717.0112	0.0724
717.9115	20./181
739.4232	27.2511
700.6050	0.2088
790.020	6 7300
805 7737	11 3147
843 4395	1 7202
919 629	37 1859
951 7191	31 8976
960 2885	2 6521
966.588	10.2579
1046.3734	3.8264
1051.7325	1.107
1093.3557	53.251
1183.9727	9.8852
1208.2366	14.9414
1220.3445	0.256
1354.5992	4.7978
1389.0625	326.8959
1392.5596	309.3893
1402.1146	5.7057
1422.838	4.377
1423.0629	6.7083
1475.6511	2.6229
1479.3087	11.0602
1495.7421	9.6734
1608.9564	75.6162
1626.0082	155.939
1637.3636	7.7795
1668.2966	226.3714
1668.9285	185.4888
3075.5823	0.8369
3143.8171	5.2936
51/5./5 2256 0207	4.0642
5250.9297 2257 0266	12.3643
323/.0200	29.788

artifacts associated with sample preparation and detector configuration can in principle introduce errors. One advantage of permittivity functions constructed using experimental measurements, however, is that many aspects of dielectric response on the macroscale that are associated with multiscale averaging

Fig. 7 Molecular geometry of TNT

Fig. 8 Molecular geometry of two-molecule cluster of TNT

Fig. 9 Molecular geometry of four-molecule cluster of TNT

and molecule-lattice coupling are taken into account inherently. Accordingly, the disadvantage of this approach is that the nature of any multiscale averaging and resonant structure, contributing to dielectric response on the macroscopic level, may not be understood. This lack of quantitative understanding can in principle inhibit the development of pump-probe type methodologies for selective excitation of molecular modes, which are for the purpose of enhanced signature detection or modulation. Better interpretation of dielectric response of explosives on a macroscale can be achieved through correlation of resonance structure, which is experimentally observed, with spectra calculated by DFT. In principle, correlation of resonance structure would include the quantitative analysis of changes in signature features associated with the transition of

Table 6Oscillation frequencies and IR intensitiesfor two-molecule cluster of TNT

Frequency, cm ⁻¹	Intensity, km/mo
8.1269	0.0355
9.2439	0.1381
14.9722	0.1304
17.9857	0.0806
27.8664	0.1452
51.3591	0.1152
52.1877	0.1647
54.9708	0.1831
56.1668	0.0134
59.7929	0.3965
78.491	1.4342
89.0883	0.0858
101.2143	7.358
103.5822	5.1626
123.1052	6.1392
127.3796	3.0096
150.451	3.4095
153.1326	1.5344
179.5611	0.7559
185.8249	1.666
189.4679	0.2125
193.7987	7.0708
194.5187	1.3655
199.9836	2.5218
296.0558	3.3548
296 6949	0 8447
324.7901	0.2067
325 6773	0.2503
326 5354	0.035
329 1659	0 2011
352 9561	1 8829
353 7762	2 7653
367 1677	1 2469
368 4943	1 7859
385 1874	1 5395
387 5417	1 2049
470 4774	0.6591
471 4932	1 4576
482 1479	0.0734
483.016	0.4663
541 2321	0.2644
541 4728	3 0752
548 9486	0 5345
549 1266	5 0519
661 4668	18 0395
662 5407	2 1107
668 0220	2.1107
668 7801	0.449
717 9515	0.2078
/1/.0313	14.6555
720 2018	111.0224
739.2918	7 4066
740.0037	7.4000
760.1704	33.43/4
700.55	22.800
/90.55	0.2145
/91.3138	0.10/1
/90.3840	2.8469
/96./956	10.0258
805.9091	21.8258
806.2351	2.4385
843.0377	0.4042
844.2998	3.981
921.465	5.1014
922.0174	62.7738

Table 6 Continued

Frequency, cm ⁻¹	Intensity, km/mol	tor tour-m
052 5802	24.9710	Frequency,
952.5892	34.8/19 20.8212	6 0027
959.1544	4 1415	6.0037
960 2688	2 7507	0.6127
966 3623	10 1398	9.3311
966 7785	10.1598	10./15/
1048 9553	3 3337	13.1434
1050 6176	4 1689	17.0465
1052 5814	2 3397	10 1606
1056 3804	1 6056	21 5413
1094 1389	39 3235	21.5415
1094 3667	64 4747	27 2907
1184 6285	15 6223	28 3122
1184 7833	4 4717	32 3861
1208.917	6.8039	34 9573
1209.2321	26.3875	40 7299
1220.4561	0.3392	45 9148
1222.2325	0.3771	50 9682
1354.3826	15.2785	51.3221
1355.7351	7,5663	51 9382
1388.4705	610.8024	52.3798
1389.1523	31.4292	54 6865
1392.7549	647.5478	55.5157
1394.4088	58.375	57.1434
1402.6722	1.3532	62.0863
1405.172	40.3744	67.9725
1421.4177	9.6829	73.8181
1422.4552	5.9836	82.7084
1424.182	3.6857	91.401
1424.5634	7.0426	95.9635
1475.9287	9.638	99.4256
1476.429	0.6661	102.8424
1477.5623	5.8383	103.8391
1480.2882	9.2747	110.2973
1499.3215	7.3228	112.2823
1501.9449	6.629	124.5235
1607.2729	14.1997	130.0222
1608.0475	147.0028	132.8818
1620.5898	76.0466	135.3963
1624.0647	230.3202	147.6898
1633.2048	22.9768	152.6375
1634.0034	18.3162	153.1419
1664.0026	50.159	157.2293
1667.4041	334.8076	165.0722
1668.4406	210.3268	175.0778
1669.2795	166.2294	178.4232
3074.9392	0.8768	184.5245
3075.6946	0.259	188.0139
3146.9888	2.6818	190.2879
3147.3743	4.1554	192.0548
3180.3569	1.1336	192.7032
3180.9182	3.7902	196.8943
3255.7366	23.6929	198.2761
3257.2678	21.2765	199.7631
3258.4272	17.8489	202.1056
3260.5779	14.6354	294.9276
		296.7783

Table 7Oscillation frequencies and IR intensitiesfor four-molecule cluster of TNT

Frequency, cm ⁻¹	Intensity, km/mol
6.0037	0.0276
6.8127	0.0135
9.5511	0.0445
10.7137	0.0363
13.1434	0.1926
14.6485	0.0858
17.4745	0.0361
19.1606	0.0969
21.5413	0.0717
25.5663	0.2335
27.2907	0.06/2
28.3122	0.0329
52.5801 24.0572	0.1016
34.9373 40.7200	0.2077
40.7299	0.5407
43.9148	0.3988
51 2221	0.130
51.0282	0.1839
52 3708	0.3453
54 6865	0.0232
55 5157	0.0232
57 1434	0.358
62 0863	1 2134
67 9725	0 2731
73 8181	1 3738
82.7084	0.6903
91.401	0.4921
95.9635	1.9103
99.4256	0.6227
102.8424	1.2621
103.8391	9.4549
110.2973	5.5524
112.2823	14.0066
124.5235	5.1683
130.0222	1.9675
132.8818	2.7792
135.3963	1.4377
147.6898	2.1166
152.6375	5.3
153.1419	2.6393
157.2293	1.2297
165.0722	0.1527
175.0778	0.79
1/8.4232	1.1197
184.5245	1.3816
188.0139	2.7537
190.2879	0.3889
192.0548	3.329
192.7032	5 2072
190.8943	5.2075
198.2701	0.4605
202 1056	5.8742
294 9276	1 4550
296 7783	1.4337 1.0261
297 8845	2 4338
298 8831	2. 7 558 4 4041
324 7092	4.4741 0 7380
325 209	0.2309
325.209	0.0029
325 811	0.0405
328 6621	0.7673
329 6841	0.4998

the system from that of a low-density system of uncoupled molecule to that of a bulk lattice.

One approach for the construction of permittivity functions using DFT calculations, discussed previously (Ref 10, 11) is that of a direct problem approach where dielectric response is estimated within the bounds of relatively well-defined

Table 7Continued

Table 7 Continued

Frequency, cm ⁻¹	Intensity, km/mol	Frequency, cm ⁻¹	Intensity, km/mol
330.0564	0.8057	845.4727	2.1841
332.9135	0.1063	921.0493	17.8875
353.4549	2.2863	922.0851	40.7448
353.8611	2.0427	923.0247	45.2336
354.4024	2.9248	923.3955	28.3322
355.4821	3.7328	951.4396	6.7371
366.9194	1.0839	951.9678	39.1078
368.2383	1.9205	953.4363	32.0243
369.3088	3.9455	953.5462	24.8804
371.3992	4.807	954.3428	34.9316
384.9266	1.092	955.4679	4.9786
385.0972	1.1167	960.9208	3,5001
388.1738	0.4284	962.0534	9.2311
391.668	1.9364	962.7248	8.0756
463.06	0.3618	963.062	0.6791
467.1603	1.1573	966.6378	8.1237
471.2585	0.2994	968.2356	9.3892
472.1674	1.6982	1043.2646	8.177
481.0948	0.1812	1044.2894	6.1182
483.7679	0.597	1048.3198	5.3386
484 3633	1 0706	1050 1333	2.0496
485 0125	0 3554	1050 6147	3 5367
540 766	2 8936	1050.6708	3 3637
541 2985	1 5216	1052 1492	5.8976
542 3571	0.716	1052 735	4 1214
542.5571	2 9325	1096 455	75 916
549 0063	3.0966	1096 6624	54 0083
549.0005	5 5645	1097.0024	37 4622
550 4266	3 /18	1100.058	41 0888
551 0865	2.0702	1185 2416	7 8041
650 2755	2.0792	1185.6052	16 1508
650 8872	2 4202	1185.0052	10.1508
661 2704	3.4303	1185.7500	10.7074
662 7278	0 7022	1200 8222	12.0375
667 572	9.7932	1209.6322	15.0785
660 2044	0.5240	1212.0030	13.3037
672 8601	0.0795	1217.5505	16 2261
672.2171	4.0311	1217.5305	0.5020
716 6265	2.0274	1219.2219	0.3039
716.0505	24.3244	1222.7201	1 1508
718.0099	15.3797	1222.935	1.1308
/18.0088	22.1708	1223.304	1.0288
719.3519	18.0592	1351.2896	9.5548
/39.063	24./206	1353.3455	4.2628
/39.3/08	130.8296	1354.8254	5.0704
739.7837	7.1419	1355./509	6.9006
740.7033	70.2921	1387.3927	504.0168
759.5333	23.6246	1388.4775	243./943
759.7645	42.8882	1388.7524	87.4017
761.1715	20.4302	1389.0958	447.19
761.3542	30.9627	1392.4327	798.6592
790.5221	0.8358	1393.287	243.6454
790.5998	0.8792	1394.8691	156.6218
791.1676	2.192	1396.2841	238.8504
791.3026	0.1507	1402.8853	40.1082
795.9496	5.5813	1405.0447	2.3998
796.7322	4.9704	1405.257	35.9898
797.4355	0.6989	1408.3396	49.7168
797.6327	9.7116	1419.1819	11.4361
805.0269	12.7807	1419.2982	4.5842
805.3314	9.2942	1420.2479	5.2822
806.0565	12.7468	1420.9575	11.7015
807.2446	17.6478	1424.3171	6.9025
842.8611	0.756	1424.7	14.2952
843.3628	3.0391	1425.6173	3.7006
844 5015	1 8451	1426.0646	3 5978
011.0010	1.0701	1120.0010	5.5710

Table 7 Continued

Frequency, cm ⁻¹	Intensity, km/mol
1473.5498	9.0424
1474.6635	12.8272
1475.9045	16.0343
1476.1462	5.7658
1476.3361	10.2827
1477.5513	3.2443
1477.8824	21.6264
1478.4861	10.8031
1494.5078	2.0778
1497.4508	11.3855
1499.9305	5.7411
1499.9749	6.4007
1602.7976	89.5147
1604.576	75.0732
1605.7961	16.9799
1606.5385	136.8389
1614.0665	33.3701
1615 7209	24 6628
1617.3809	316.2843
1623.7596	58.5519
1624 993	121 0073
1630.8451	12.1011
1632.7219	102.004
1634.2406	2.0151
1659.2784	20.6782
1660.0342	35.6986
1663.2992	146.911
1664.3833	383.5529
1666.8501	298.8433
1668.7557	154.036
1669.1105	13.3956
1669.4171	381.2602
3073.4512	2.0504
3075.5383	0.5901
3076.5342	0.1196
3076.7654	0.9591
3143.1304	3.4185
3149.0393	8.8789
3149.7698	4.0967
3152.1172	3.5304
3177.7893	3.8554
3182.9602	2.5709
3190.4402	3.017
3204.1228	1.4827
3231.541	99.6425
3253.373	20.5025
3255.3308	23.642
3255.5933	23.5913
3256.0857	22.1997
3257.0527	24.6223
3258.084	18.7786
3265.4907	18.7129

adjustable parameters. Following this approach, a permittivity function is constructed using the DFT-calculated absorption spectra under the condition that the calculated resonance locations are fixed, while resonance widths and number densities are assumed adjustable. With respect to this approach, reference is again made to Fig. 5, 6, and 13-15, which show continuous spectra consisting of a superposition of essentially Lorenzian functions of various heights and widths, constructed using discrete spectra. Although the primarily purpose of this type of construction within GAUSSIAN is for the purpose of

Fig. 10 IR intensity (arbitrary units) as a function of frequency calculated using DFT B3LYP/6-311G(2d,2p) for single isolated molecule of TNT according to frozen phonon approximation

Fig. 11 IR intensity (arbitrary units) as a function of frequency calculated using DFT B3LYP/6-311G(2d,2p) for two-molecule cluster of TNT according to frozen phonon approximation

Fig. 12 IR intensity (arbitrary units) as a function of frequency calculated using DFT B3LYP/6-311G(2d,2p) for four-molecule cluster of TNT according to frozen phonon approximation

Fig. 13 Continuous-spectrum representation of IR intensity (arbitrary units) as a function of frequency calculated using DFT for single isolated molecule of TNT

Fig. 14 Continuous-spectrum representation of IR intensity (arbitrary units) as a function of frequency calculated using DFT for two-molecule cluster of TNT

enhanced visualization of spectral features, it is significant to note that this operation represents, at some level, a zeroth-order estimation of the characteristic scaling and widths of resonances contributing to the dielectric response, i.e., permittivity function. For qualitative comparison of spectral features, this type of zeroth-order estimate should be sufficient. For the

Fig. 15 Continuous-spectrum representation of IR intensity (arbitrary units) as a function of frequency calculated using DFT for four-molecule cluster of TNT

construction of permittivity functions to be used for quantitative simulations, it is more appropriate, however, to assume the characteristic scaling and widths of DFT-calculated resonances as adjustable parameters, i.e., parameters to be assigned values according to additional information.

Following an approach for construction of permittivity functions using DFT, which assumes the characteristic scaling and widths of resonances as adjustable parameters, inverse methods of analysis can be adopted. Accordingly, permittivity functions can be constructed using bin-averaged DFT-calculated spectra. Given the bin-averaged DFT spectra, permittivity function can be constructed using superpositions of Lorenzian functions that are in terms of reduced sets of phenomenological scaling and widths of resonances. This approach should consider, in principle, the sensitivity of reflectivity, as would be measured by a specific detection design (see Ref 9), with respect to level of bin averaging and variation in values of the associated phenomenological scaling and widths of resonances.

As demonstrated in this study, with respect to DFT calculations concerning molecular clusters, it is important to note that the atomic positions of the relaxed or equilibrium configuration of a single isolated molecule, e.g., Table 1 and 4, provide a convenient starting point. Accordingly, calculation of the dielectric response of molecular clusters that would represent an approximation of a bulk system entails the construction of a super cell consisting of molecules initial positions of which are those determined by DFT for isolated systems. Additional constraints on this super cell are based on crystallographic information concerning bulk density or lattice spacing.

It must be emphasized again in this study that, as in previous studies (Ref 10, 11), one purpose of DFT-calculated spectra, related to practical application and extremely important for interpretation signature features and the design of detectors, is the quantitative analysis of the inherent limitation on levels of detection associated with various types of detection strategies. With respect to the purpose of examining inherent limitations on IED detection, the dominant features of response spectra that are calculated using DFT provide a foundation for establishing what level of detection is achievable in the absence of instrumental and environmental factors associated with detection. Accordingly, the approach presented here, for construction of permittivity functions, provides a specific application of DFT. For any given energetic material and frequency range of the incident electromagnetic wave, DFT can calculate a set of response signatures each of which is characterized by an excitation frequency, magnitude, and width. These response signatures must then be adjusted parametrically to construct permittivity functions. Accordingly, parameter adjustment with respect to a given set of experimental measurements, which would entail parameter optimization and sensitivity analysis, will determine what types of signature structure are recoverable at the level of detection for a given detector design.

Finally, the DFT calculations presented here were performed using the DFT software GAUSSIAN. With respect to the approach presented here for the construction of permittivity functions, these calculations represent results of numerical experiments with the "numerical apparatus" GAUSSIAN, which has associated with it specific discrete numerical representations and associated approximations. Again, an underlying factor supporting the construction of permittivity functions using DFT-calculated spectra is that the associated software technology has evolved to a point of maturity where dielectric response to electromagnetic excitation can be determined quantitatively for large molecular systems.

6. Conclusion

The calculations of ground state resonance structure associated with molecular clusters of PETN and TNT using DFT are meant to serve as reasonable estimates of molecular level response characteristics, providing interpretation of dielectric response features, for subsequent adjustment relative to experimental measurements and additional constraint based on molecular structure theory. With respect to spectroscopic methods for the detection of explosives, i.e., different types of detection strategies and their associated algorithms for postprocessing of measurements, the calculated resonance spectra presented here serve the purpose of simulating detector designs for detection of molecular clusters of explosives. That is to say, for detection of spatially distributed molecular clusters of explosives, these spectra can be assumed as a reasonable estimate of dielectric response for purposes of the practical detection. In addition, it must be remembered that many types of explosives existing in bulk should not be assumed to have microstructure or dielectric response characteristics corresponding to a lattice. In many cases, explosives in bulk are characterized by molecular clusters, which are distributed within a host or binder material. For these cases, it is reasonable to assume that, as demonstrated in this study, many of the dielectric response characteristics of small molecular clusters, as well as isolated molecules remain preserved. This follows in that molecule-molecule coupling in these cases is more characteristic of isolated scattering sites, rather than that of a lattice structure.

Acknowledgment

This study was supported by the Office of Naval Research.

References

- B.M. Rice and C.F. Chabalowski, Ab Initio and Nonlocal Density Functional Study of 1,3,5-Trinitro-s-triazine (RDX) Conformers, J. Phys. Chem., 1997, 101, p 8720
- Y. Chen, H. Liu, Y. Deng, D. Schauki, M.J. Fitch, R. Osiander, C. Dodson, J.B. Spicer, M. Shur, and X.-C. Zhang, THz Spectroscopic Investigation of 2,4-dinitrotoluene, *Chem. Phys. Lett.*, 2004, 400, p 357–361
- D.G. Allis, D.A. Prokhorova, and T.M. Korter, Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX, *J. Phys. Chem. A*, 2006, **110**, p 1951–1959
- D.G. Allis and T.M. Korter, Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN, *Chem. Phys. Chem.*, 2006, 7, p 2398
- J. Chen, Y. Chen, H. Zhao, G.J. Bastiaans, and X.-C. Zhang, *Opt. Exp.*, 2007, 15, p 11763
- M.R. Leahy-Hoppa, M.J. Fitch, X. Zheng, L.M. Hayden, and R. Osiander, Wideband Terahertz Spectroscopy of Explosives, *Chem. Phys. Lett.*, 2007, 434, p 227–230
- J. Hooper, E. Mitchell, C. Konek, and J. Wilkinson, Terahertz Spectroscopy Techniques for Explosives Detection, *Chem. Phys. Lett.*, 2009, 467, p 309
- M.R. Leahy-Hoppa, M.J. Fitch, and R. Osiander, Terahertz Spectroscopy Techniques for Explosives Detection, *Anal. Bioanal. Chem.*, 2009, **395**, p 247

- A. Shabaev, S.G. Lambrakos, N. Bernstein, V.L. Jacobs, and D. Finkenstadt, A General Framework for Numerical Simulation of Improvised Explosive Device (IED)-Detection Scenarios Using Density Functional Theory (DFT) and Terahertz (THz) Spectra, *Appl. Spectrosc.*, 2011, 65, p 409
- A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, and D. Finkenstadt, THz Dielectric Properties of High Explosives Calculated by Density Functional Theory for the Design of Detectors, *J. Mater. Eng. Perform.*, 2011, **20**(9), p 1536
- L. Huang, A. Shabaev, S.G. Lambrakos, N. Bernstein, V. Jacobs, D. Finkenstadt, and L. Massa, Dielectric Response of High Explosives at THz Frequencies Calculated Using Density Functional Theory, *J. Mater. Eng. Perform.*, 2011, doi:10.1007/s11665-011-0020-3
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, *Gaussian 09, Revision A.1*, Gaussian, Inc., Wallingford, CT, 2009
- A. Frisch, M.J. Frisch, F.R. Clemente, and G.W. Trucks, *Gaussian 09 User's Reference*, Gaussian Inc., 2009, p 105–106, online: www.gaussian.com/g_tech/g_ur/g09help.htm
- P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, *Phys. Rev.*, 1964, **136**, p B864
- W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, *Phys. Rev.*, 1965, 140, p A1133
- R.O. Jones and O. Gunnarson, The Density Functional Formalism, Its Applications and Prospects, *Rev. Mod. Phys.*, 1989, 61, p 689
- W.W. Hager and H. Zhang, A Survey of Nonlinear Conjugate Gradient Methods, *Pac. J. Optim.*, 2006, 2, p 35–58
- R.M. Martin, *Electronic Structures Basic Theory and Practical Methods*, Cambridge University Press, Cambridge, 2004, p 25
- E.B. Wilson, J.C. Decius, and P.C. Cross, *Molecular Vibrations*, McGraw-Hill, New York, 1955
- J.W. Ochterski, Vibrational Analysis in Gaussian, help@gaussian.com, 1999
- C.A.D. Roeser and E. Mazur, Light-Matter Interactions on Femtosecond Time Scale, *Frontiers of Optical Spectroscopy. NATO Science Series*, Vol 168, B. Di Bartolo and O. Forte, Ed., Kluwer Academic Publishers, Dordrecht, 2005, p 29
- 22. C.F. Bohren and D.R. Huffman, *Absorption and Scattering of Light by* Small Particles, Wiley-VCH Verlag, Weinheim, 2004
- A.D. Becke, Density-functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 1993, 98, p 5648–5652
- B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, *Chem. Phys. Lett.*, 1989, 157, p 200– 206
- A.D. McLean and G.S. Chandler, Contracted Gaussian-Basis Sets for Molecular Calculations. 1. 2nd row atoms, Z = 11-18, J. Chem. Phys., 1980, 72, p 5639–5648
- T. Clark, J. Chandrasekhar, G.W. Spitznagel, and P.V.R. Schleyer, Efficient Diffuse Function-Augmented Basis-Sets for Anion Calculations. 3. The 3-21+G Basis Set for 1st-Row Elements, Li-F, *J. Comp. Chem.*, 1983, 4, p 294–301
- M.J. Frisch, J.A. Pople, and J.S. Binkley, Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets, J. Chem. Phys., 1984, 80, p 3265–3269
- I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe, J. Pearson, and R. Taylor, New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures, *Acta Cryst.*, 2002, B58, p 389–397